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Abstract
We present simplified expressions for the dynamic structure factor, or form
factor S(k, ω), which is the quantity describing the inelastic x-ray scattering
cross section from a dense plasma or a simple liquid. Our results, based
on the random phase approximation (RPA) for the treatment on the charged
particle coupling, are compared with analytical expressions for the free electron
dynamic structure factor which include effects of strong coupling in both
classical and degenerate plasmas. We will show that these modifications
introduce minimal corrections to the RPA for typical conditions found in
recent non-collective x-ray Thomson scattering experiment on solid density
isochorically heated laser plasmas. On the other hand, strong collective
scattering may exhibit significant deviations from the RPA. The results shown
in this work can be applied to interpreting future x-ray scattering in warm
dense plasmas occurring in inertial confinement fusion experiments or for the
modelling of solid density matter found in the interior of planets.

PACS numbers: 52.70.La, 71.10.Ca, 61.10.Eq, 52.38.−r, 52.27.Gr, 61.20.Ne

1. Introduction

Microscopic diagnostics of dense plasmas pose several difficulties as currently adopted
experimental techniques are rather limited in probing particle densities, temperatures and
charge states of warm dense matter. Since dense plasmas are not transparent to UV or
optical probes, they can only provide information on their surface layers. On the other hand,
the emerging interest in understanding the properties of matter under extreme conditions,
as the ones achieved in inertial confinement fusion (ICF) experiments [1], necessitates the
development of finite temperature dense matter probes. In ICF implosion experiments, a
variety of plasma regimes are created, and of particular interest are Fermi degenerate (or
quantum) plasmas, characterized by a Fermi temperature greater than the electron kinetic
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temperature. Moreover, equation of state (EOS) predictions for various degenerate plasmas
can only be resolved by accurate measurements of the chemical state of the materials.
However, uncertainties in the present data and the lack of reliable independent measurements
of temperature and density have made the validation of current models and calculations
difficult. The extension of spectrally resolved Thomson scattering [2] in the x-ray regime
for the diagnostics of solid density plasmas has been recently presented both theoretically
[3, 4] and experimentally [5]. This method was first discussed by Landen et al [3] as a viable
diagnostic for ICF experiments. In [4], we have given a complete theoretical expression for
the scattering form factor to represent x-ray Thomson scattering for arbitrary α parameter,
where α = 1/kλD (λD is the Debye length) distinguishes between non-collective (α < 1)

and collective (α > 1) scattering in classical plasmas. Extension to scattering from ideal,
weakly coupled to degenerate plasmas was also extensively discussed by Gregori et al [4]. For
plasmas obeying the classical statistics, the electron–electron coupling constant is defined as
(see, e.g., Ichimaru [6]) � ≡ �clas = e2/4πε0kBTed , where Te is the electron temperature and
d = (3/4πne)

1/3 the mean sphere radius per electron, with ne the electron density. In other
words, �clas is the ratio between the potential and the kinetic energy of the electrons. In an ideal
plasma, �clas � 1 and the kinetic energy dominates the particle motion with negligible inter-
particle coupling. In a strongly coupled plasma, �clas � 1, and the electrostatic (Coulomb)
forces determine the nature of the particle motion. Weakly-to-moderately coupled plasmas
lie in the range �clas � 1. The extension of definition of the coupling constant � to the
quantum domain (i.e., a degenerate plasma) is discussed by Liboff [7]. In this case, quantum
diffraction prevents the electrons from getting arbitrarily close to each other and � is now
the ratio between the potential and the Fermi energy, EF = kBTF , of the electrons. Having
EF = h̄2(3π2ne)

2/3/2me, as electron density increases, in contrast to a classical plasma, the
coupling constant decreases, since � ≡ �q = e2/4πε0EF d ∼ n

−1/3
e . Similarly, the definition

of the scattering parameter α needs to be corrected to include quantum effects, such that
α ∼ 1/kλT F [4], where λT F is the Thomas–Fermi screening length.

Since in our previous work [4], the random phase approximation (RPA) was used in
the derivation of the free electron dynamic structure, a validation of such an approach with
more sophisticated techniques is necessary in the case of the analysis of x-ray scattering from
weakly-to-moderately coupled plasmas (� � 1). In particular, we will obtain static and
dynamic local field corrections to the RPA by using a simple pseudopotential description of
the charged particle interaction in order to account for quantum diffraction and symmetry,
and we will show that resultant corrections to the the dynamic structure are negligible for
the experimental conditions found in recent x-ray Thomson scattering experiments [8, 5].
Conversely, we will also indicate possible future experiments which can exhibit significant
differences from the RPA results.

2. Theory of x-ray Thomson scattering

We will briefly summarize the result of the theory [4] describing the x-ray scattering from a
uniform plasma containing N ions per unit volume. If ZA is the nuclear charge of the ion,
the total number of electrons per unit volume in the system, including free and bound ones,
is ZAN . Let us now assume we probe such a system with x-rays of frequency ω0 such that
h̄ω0 � EI , with EI the ionization energy of any bound electron, i.e., the incident frequency
must be large compared to any natural absorption frequency of the scattering atom, which
allows us to neglect photoabsorption. During the scattering process, the incident photon
transfers momentum h̄k and energy h̄ω = h̄2k2/2me = h̄ω0 − h̄ω1 to the electron, where ω1
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is the frequency of the scattered radiation. In the non-relativistic limit (h̄ω � h̄ω0)

k = |k| = 4π

λ0
sin(θ/2) (1)

with λ0 the probe wavelength and θ the scattering angle. We denote with Zf and Zc the
numbers of kinematically free and core electrons, respectively. Clearly, ZA = Zf + Zc.
To avoid possible confusions, we should stress that Zf is conceptually different from the
true ionization state of the atom. It includes both the truly free (removed from the atom by
ionization) and the valence (weakly bound) electrons; thus Zf = Z + Zv, where Z is the
number of electrons removed from the atom, and Zv is the number of valence electrons. In
the limiting case of a liquid metal, Z = 0, and only the valence (or conduction) electrons need
to be considered. Following the approach of Chihara [9, 10], the scattering cross section is
described in terms of the dynamic structure factor of all the electrons in the plasma

d2σ

d	 dω
= σT

k1

k0
S(k, ω) (2)

where σT is the usual Thomson cross section and S(k, ω) is the total dynamic structure factor
defined as

S(k, ω) = |fI (k) + q(k)|2Sii(k, ω) + Zf S0
ee(k, ω) + Zc

∫
S̃ce(k, ω − ω′)Ss(k, ω′) dω′. (3)

The first term in equation (3) accounts for the density correlations of electrons that dynamically
follow the ion motion. This includes both the core electrons, represented by the ion form
factor fI (k), and the screening cloud of free (and valence) electrons that surround the ion,
represented by q(k) [11]. Sii(k, ω) is the ion–ion density correlation function. The second
term in equation (3) gives the contribution in the scattering from the free electrons that do
not follow the ion motion. Here, S0

ee(k, ω) is the high-frequency part of the electron–electron
correlation function [12] and it reduces to the usual electron feature [13, 14] in the case
of an optical probe. Inelastic scattering by core electrons is included in the last term of
equation (3), which arises from Raman transitions to the continuum of core electrons within
an ion, S̃ce(k, ω), modulated by the self-motion of the ions, represented by Ss(k, ω).

We shall also observe that for typical conditions in dense plasmas for ICF experiments,
the ions are always non-degenerate, since their thermal de Broglie wavelength is much smaller
than the average interparticle distance. On the other hand at Te ∼ 0, the electrons can exhibit
some degree of degeneracy, and obey the Fermi–Dirac distribution. In order to describe the
properties of a degenerate fluid, we use the approach suggested by Dharma-Wardana and Perrot
[15] of treating the correlations by considering a classical Coulomb fluid at some effective
temperature Tq = TF /(1.3251 − 0.1779

√
rs ), with rs = d/aB (aB is the Bohr radius). The

correlation properties are then calculated at the effective temperatureTcf = (
T 2

e + T 2
q

)1/2
. This

corrected temperature is chosen such that the temperature of an electron liquid obeying classical
statistics exactly gives the same correlation energy of a degenerate quantum fluid at Te = 0
obtained from quantum Monte Carlo calculations [16]. This approach was shown to reproduce
finite-temperature static response of an electron fluid, valid for arbitrary degeneracy [16]. The
reduction to a classical electron fluid problem also allows a unified definition of the coupling
constant and the scattering parameter which is valid at any degeneracy [4]. In particular, we
then have � = e2/4πε0kBTcf d , and similarly α = 1/kλD = (ε0kBTcf /e2nek

2)1/2, i.e., with
the Debye length now calculated at the temperature Tcf . In the limit Te → 0, we thus have
α ∼ 1/kλT F .

Under these conditions, and within the framework of the density response formalism
for a two component plasma, we can calculate the static structure factors Sii(k), See(k) and
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Sei(k) = Sie(k) using the semi-classical approach suggested by Arkhipov and Davletov [17],
which is based on a pseudo-potential model for the interaction between charged particles to
account for quantum diffraction effects (i.e., the Pauli exclusion principle) and symmetry [18].
This approach was shown to give good agreement with the calculations of Ichimaru et al [19],
based on the direct solution of the hypernetted chain (HNC) equations, up to � � 1 [17].
Under the assumption of thermodynamic equilibrium, the resultant expressions for the various
static structure factors are thus:

Srs(k) = δrs −
√

nrns

kBTcf

�rs(k) (4)

where r, s = e (electrons) or i (ions), ne = Zf ni = Zf N . Symmetry in the electron–ion
interactions requires Sei(k) = Sie(k). The coefficients �rs(k) are given by

�ee(k) = e2

ε0�

[
k2

1 + k2λ2
ee

+ k2
Di

(
1(

1 + k2λ2
ee

)(
1 + k2λ2

ii

) − 1(
1 + k2λ2

ei

)2

)

+ A

(
k2 +

k2
Di

1 + k2λ2
ii

)
k2 exp(−k2/4b)

]
(5)

�ii(k) = Z2
f e2

ε0�

[
k2

1 + k2λ2
ii

+ k2
De

(
1(

1 + k2λ2
ee

)(
1 + k2λ2

ii

) − 1(
1 + k2λ2

ei

)2

)

+
Ak2k2

De

1 + k2λ2
ii

exp(−k2/4b)

]
(6)

�ei(k) = −Zf e2

ε0�

k2

1 + k2λ2
ei

(7)

where

b = (
λ2

eeπ ln 2
)−1

A = kBTcf ln 2π3/2b−3/2ε0/e
2 and

� = k4 +
k2k2

De

1 + k2λ2
ee

+
k2k2

Di

1 + k2λ2
ii

+ k2
Dek

2
Di

(
1(

1 + k2λ2
ee

)(
1 + k2λ2

ii

) − 1(
1 + k2λ2

ei

)2

)

+ Ak2k2
De

(
k2 +

k2
Di

1 + k2λ2
ii

)
exp(−k2/4b). (8)

The inverse of the electron and the ion Debye lengths are kDe = (nee
2/ε0kBTcf )1/2 and

kDi = (Zf nee
2/ε0kBTcf )1/2, respectively. In equations (5)–(8), the thermal de Broglie

wavelength is defined by λrs = h̄/(2πµrskBTcf )1/2 with µrs = mrms/(mr + ms) the reduced
mass of the interacting pair.

The first term in equation (3) describes the low-frequency response of the ions and since
we cannot currently experimentally access this low-frequency part of the spectrum, we can
simply approximate Sii(k, ω) = Sii (k)δ(ω). Thus, the calculation of the static structure factor
for ion–ion correlations as described is quite reasonably correct for weakly-to-moderately
couplings. Similarly, the response from tightly bound electrons within each single ion, the
third term in equation (3), yields only a small background [4], at least for low-Z materials, and
so its contribution on the resultant x-ray scattering spectrum can be neglected.

The free electron density–density correlation function that appears in the second term of
equation (3) can be formally obtained through the fluctuation–dissipation theorem [20]:

S0
ee(k, ω) = − h̄

1 − exp(−h̄ω/kBTe)

ε0k
2

πe2ne

Im

[
1

ε(k, ω)

]
(9)
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where ε(k, ω) is the electron dielectric response function. In the case of an ideal classical
plasma, the plasma dielectric response is evaluated from a perturbation expansion of the
Vlasov equation [21]. The resultant form for the density correlation function is then known as
the Salpeter electron feature [13]. This approach, however, fails when the electrons become
degenerate or nearly degenerate as quantum effects begin to dominate. Under the assumption
that inter-particle interactions are weak, so that the nonlinear interaction between different
density fluctuations is negligible, the dielectric function can be derived in the RPA [22, 23].
In the classical limit, it reduces to the usual Vlasov equation. We shall stress the point that the
RPA is derived under the assumption � � 1, thus its validity in the description of electron
correlations in weakly-to-moderately coupled plasmas needs to be verified.

As a final remark on the validity of this approach, we have to stress that the plasma
needs to be isotropic and homogeneous. Since, in inertial fusion experiments and other
plasma experiments, this requirement is often not satisfied, a precise post-process analysis
is necessary in order to deconvolve the data from the additional broadening induced by
temperature and density gradients, which, in some instances, may account for all the relevant
broadening observed in the experimental lineshapes. On the other hand, by carefully designing
the experiment, it is possible to significantly reduce gradients in both density and temperature,
thus reproducing uniform plasma conditions which are suitable for the analysis discussed in this
paper, as, for example, in the recent experiments on spectrally resolved x-ray measurements
on beryllium targets presented by Glenzer et al [5].

3. Local field corrections

The RPA form of the dielectric function is (see, e.g., Landau et al [21])

εRPA(k, ω) = 1 − v(k)χ0(k, ω) (10)

with v(k) = e2/ε0k
2 the Fourier transform of the bare Coulomb potential, and χ0 is the density

response of the non-interacting electron system:

χ0(k, ω) = 1

h̄

∫
f (p + h̄k/2) − f (p − h̄k/2)

k · p/me − ω − iν

2 d3p

(2πh̄)3
(11)

with ν → 0+, thus neglecting any collisional effects. The electron distribution function is
specified as

f (p) = 1

exp
(

p2/2me−µ

kBTe

)
+ 1

(12)

where p is the electron momentum and µ the chemical potential, defined by the normalization
condition ∫

f (p)
2 d3p

(2πh̄)3
= ne (13)

where we have accounted for both spin–state electrons.
Strong coupling effects stem from nonlinear correlations between density fluctuations and

are usually described in terms of a dynamic local field correction (DLFC), G(k, ω), which
measures the difference between the bare Coulomb interaction and the screened response [24]

χ(k, ω) = χ0(k, ω)

1 + v(k)G(k, ω)χ0(k, ω)
(14)

and, ε(k, ω) = 1 − v(k)χ(k, ω). Clearly, the RPA is reproduced for G(k, ω) = 0. The
calculation of the local field correction is not an easy task, and some approximations are
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required. The most common one is to assume that G(k, ω) is a weak function of the
frequency, thus G(k) ≡ G(k, ω = 0) is the static local field correction (SLFC). In the one-
component plasma approximation, the static local field correction is constrained at long and
short wavelengths by the relations [6] G(k → 0) = γ (k/kF )2 and G(k → ∞) = 1 − g(0),
where kF = (3π2ne)

1/3 is the Fermi momentum, γ is a function of the compressibility and
we typically have γ ∼ 1/4 for rs → 0, i.e., for dense and ideal degenerate electron fluids.
Similarly, g(0) is the value of the radial distribution function at r = 0 and g(0) = 1/2 for
rs → 0, while g(0) ∼ 0.1 for the values of rs appropriate for metallic densities [25]. By taking
into account only the exchange contribution to the bare Coulomb potential, Hubbard [26] has
proposed the following form of the SLFC for a degenerate ideal electron fluid (rs = 0) in the
ground state (Te = 0):

GH(k) = 1

2

k2

k2 + k2
F

. (15)

Since GH(k) does not satisfy the long wavelength boundary, and improved form was suggested
by Geldart and Vosko [27]

GGV (k) = 1

2

k2

k2 + 2k2
F

. (16)

On the other hand, at values of rs > 0, neither (15) nor (16) may reproduce the correct
long- and short-wavelength limits. In addition, at finite temperatures and especially when the
electrons are in the state of intermediate degeneracy (Te ∼ TF ), exact representations of the
local field correction are not available. Dandrea et al [25], extending the approach developed
by Singwi et al [28] (STLS), have proposed a functional form of the type

GD(k) = A
(
1 − e−Bk2)

(17)

where A and B are determined by the boundary conditions on G(k). Similar results, also
based on the work of Singwi et al [28], have been presented by Tanaka et al [29]. By contrast,
as suggested by Dharma-Wardana and Perrot [15], the reduction of the quantum dynamics to
a classical electron fluid via an effective temperature Tcf gives an explicit form for the SLFC
by the classical relation

Cee(k) = −v(k)ne

kBTcf

[1 − G(k)] (18)

where the electron–electron direct correlation function is obtained from the Ornstein–Zernike
relations [30] in terms of the static structure factors

Cee(k) = 1 − Sii (k)

See(k)Sii (k) − S2
ei (k)

. (19)

This allows the direct determination of G(k) from the analytical static structures (4). In
figure 1, we have compared the SLFC obtained from this approach with various different
theoretical schemes for ne = 1023 cm−3 (rs = 2.5) and Te = TF = 7.86 eV. At large
wavelengths (small k), our approach seems to show a reasonable agreement with the Geldart
and Vosko [27] result. We should mention that at T = TF and rs = 2.5 we have γ ≈ 0.3 [16],
thus the correct boundary condition is satisfied. Similarly, at large k, the short wavelength
constraint is reproduced with sufficient accuracy.

Even if the static local field correction already gives a considerable improvement over
the RPA, the full dynamic local field correction (DLFC) may be necessary for the correct
modelling of strong coupling at frequencies ω � ωpe, where ωpe is the electron plasma
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Figure 1. Static local field correction for rs = 2.5 and Te/TF = 1 (� = 0.99) calculated for
different theories: the present approach, given by equation (19); the Hubbard model; the Geldart
and Vosko model and the STLS scheme in the Tanaka et al [29] extension.

frequency. Following the ansatz of Ichimaru et al [19], the DLFC is obtained from a simple
interpolation of its low- and high-frequency limits

G(k, ω) = ωI (k) + iνeG(k)

ω + iνe

(20)

where [19],

I (k) = − 1

ne

∫
d3q

(2π)3

(k · q)2

k2q2
[See(|k − q|) − See(q) +

√
Zf Sei(q)] (21)

and

νe = 4
√

2πZf e4ne

3(4πε0)2√me(kBTcf )3/2
ln � (22)

is the effective electron–ion collision frequency [31]. The generalized Coulomb logarithm is
given by [32]

ln � =
∫ ∞

0

See(k)Sii(k) − S2
ei (k)(

1 + k2λ2
ei

)2

dk

k
(23)

and, again, for the static properties we use the results from equation (4).

4. Results

In order to compare the RPA with the SLFC and DLFC given by equations (18) and (20),
respectively, we use, as an example, a LiH (ZA = 4, Zf = 2) plasma with ne = 1023 cm−3

(rs = 2.5, TF = 7.85 eV) and two different electron temperatures: Te = 1 eV and Te = 10 eV.
We have considered experimental conditions which are comparable to the ones achieved in
typical laser plasma experiments [3, 8]. We assumed Ti He-α 4.75 keV radiation probe
(λ0 = 0.26 nm) at θ = 135◦ scattering angle. Synthetic lineshapes for the free electron
dynamic structure factor S0

ee(k, ω) are plotted in figure 2. We see that the inclusion of either
a SLFC or a DLFC has only a marginal effect on the form of the spectrum. This geometry
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Figure 2. Free electron structure factor, S0
ee(k,ω), for a LiH plasma with Zf = 2, rs = 2.5

and Te/TF = 0.13 (a) or Te/TF = 1.3 (b). The scattering wavenumber is k/kF = 3.1,
which corresponds to a scattering angle of θ = 135◦ with an x-ray probe λ0 = 0.26 nm.
� = 1.42, α = 0.35, νe/ωpe = 0.35 (a) and � = 0.86, α = 0.27, νe/ωpe = 0.31 (b).
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Figure 3. Free electron structure factor, S0
ee(k,ω), for a LiH plasma with Zf = 2, rs = 2.5

and Te/TF = 0.13 (a) or Te/TF = 1.3 (b). The scattering wavenumber is k/kF = 0.87,
which corresponds to a scattering angle of θ = 30◦ with an x-ray probe λ0 = 0.26 nm.
� = 1.42, α = 1.24, νe/ωpe = 0.35 (a) and � = 0.86, α = 0.96, νe/ωpe = 0.31 (b).

corresponds to the recent x-ray Thomson scattering experiments reported by Glenzer and
co-workers [8, 5], thus confirming that in the analysis of those data, the RPA will provide
fairly accurate results. We should note that at θ = 135◦, the parameter α is less than unity (see
figure 2) and the scattering probes the non-collective part of the spectrum, which is less
sensitive to the microscopic correlations. On the other hand, at a scattering angle of θ = 30◦,
α � 1 (see figure 3), and such collective scattering is indeed more sensitive to the degree of
interparticle coupling. This effect can be seen in figure 3 where the DLFC shows remarkable
differences with the RPA. Conversely, the use of a static approximation is not able to capture
the full effect of microscopic particle correlations. In this respect, we should observe that the
SLFC relies on the low frequency approximation G(k, ω) ≈ G(k, ω = 0), which is typically
valid when ω/νe � 1. However, at the considered electron density and temperature, the
effective electron collision frequency is comparable to the electron plasma frequency (which
is about 11 eV in energy units) and most of the spectrum develops in the region |ω| > ωpe. At
the same time, the collision-driven dynamics tend to enhance the low-frequency response with
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Figure 4. Free electron structure factor, S0
ee(k,ω), for a LiH plasma with Zf = 2, rs = 2.5

and Te/TF = 0.13 (a) or Te/TF = 1.3 (b). The scattering wavenumber is k/kF = 1.2,
which corresponds to a scattering angle of θ = 135◦ with an x-ray probe λ0 = 0.66 nm.
� = 1.42, α = 0.88, νe/ωpe = 0.35 (a) and � = 0.86, α = 0.69, νe/ωpe = 0.31 (b).

the appearance of an entropy peak [33] and thus the use of a DLFC becomes crucial. Figure 3
shows that indeed the DLFC results strongly diverge from the RPA or SLFC because of a more
accurate accounting of collisional damping. Analogous conclusions are reached if instead we
use a Si He-α 1.86 keV radiation probe (λ0 = 0.66 nm) at θ = 135◦ scattering angle for the
same plasma conditions previously considered, as illustrated in figure 4. We clearly see that
the use of a probe at longer wavelength, which enables sampling of the scattering towards
the collective region of the spectrum (even in the advantageous backscattering geometry [3])
results again in large differences between the RPA and the local field corrected spectra.

5. Conclusion

We have discussed the effect of strong inter-particle coupling in the calculation of the free
electron dynamic structure factor. The approach that we have followed enabled us to treat both
classical and degenerate plasmas within the local field approximation. We have shown that
both static and dynamic local field corrections introduce minimal modifications to the RPA
structure factors for typical conditions found in recent x-ray Thomson scattering experiments
on solid density laser plasmas [8, 5]. These experiments indeed correspond to non-collective
scattering conditions where the overall spectral profile is weakly sensitive to the degree of
coupling. On the other hand, at different experimental conditions corresponding to collective
scattering geometries, significant departure from the RPA is observed. The results shown
in this work can be applied to interpreting future x-ray scattering in warm dense plasmas
occurring in inertial confinement fusion and high-energy density physics experiments and in
the interior of planets.
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